Graphs of Gibbs free energy

 Whether a reaction is product-favored, that is, whether the reactants are converted to products under standard-state conditions, is reflected in the sign of its Δr. This equation

ΔrG° = ΔrH° − TΔr

shows that the sign of Δr depends on the signs of Δr and Δr, and, in some cases, the absolute temperature (which can only have positive values). Four possibilities exist:

  1. Both Δr and Δr are positive—an endothermic process with an increase in system entropy. Δr is negative if TΔrS° > Δr, and positive if TΔr < Δr. Such a process is product-favored at high temperatures and reactant-favored at low temperatures.
  2. Both Δr and Δr are negative—an exothermic process with a decrease in system entropy. Δr is negative if |TΔrS°| < |ΔrH°| and positive if |TΔrS°| > |ΔrH°|. Such a process is product-favored at low temperatures and reactant-favored at high temperatures. (Remember that |TΔrS°| represents the magnitude of TΔrS°, ignoring the mathematical sign.)
  3. Δr is positive and Δr is negative—an endothermic process with a decrease in system entropy. Δr is positive regardless of the temperature. Such a process is reactant-favored at all temperatures.
  4. Δr is negative and Δr is positive—an exothermic process with an increase in system entropy. Δr is negative regardless of the temperature. Such a process is product-favored at all temperatures.

Gibbs free energy vs Extent of reaction





Comments

Popular posts from this blog

Borax Bead Test